Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Amino Acids ; 56(1): 33, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649596

RESUMEN

Alzheimer's disease (AD) is the most prevalent type of dementia caused by the accumulation of amyloid beta (Aß) peptides. The extracellular deposition of Aß peptides in human AD brain causes neuronal death. Therefore, it has been found that Aß peptide degradation is a possible therapeutic target for AD. CathD has been known to breakdown amyloid beta peptides. However, the structural role of CathD is not yet clear. Hence, for the purpose of gaining a deeper comprehension of the structure of CathD, the present computational investigation was performed using virtual screening technique to predict CathD's active site residues and substrate binding mode. Ligand-based virtual screening was implemented on small molecules from ZINC database against crystal structure of CathD. Further, molecular docking was utilised to investigate the binding mechanism of CathD with substrates and virtually screened inhibitors. Localised compounds obtained through screening performed by PyRx and AutoDock 4.2 with CathD receptor and the compounds having highest binding affinities were picked as; ZINC00601317, ZINC04214975 and ZINCC12500925 as our top choices. The hydrophobic residues Viz. Gly35, Val31, Thr34, Gly128, Ile124 and Ala13 help stabilising the CathD-ligand complexes, which in turn emphasises substrate and inhibitor selectivity. Further, MM-GBSA approach has been used to calculate binding free energy between CathD and selected compounds. Therefore, it would be beneficial to understand the active site pocket of CathD with the assistance of these discoveries. Thus, the present study would be helpful to identify active site pocket of CathD, which could be beneficial to develop novel therapeutic strategies for the AD.


Asunto(s)
Catepsina D , Simulación del Acoplamiento Molecular , Humanos , Sitios de Unión , Catepsina D/metabolismo , Catepsina D/química , Ligandos , Enfermedad de Alzheimer/metabolismo , Dominio Catalítico , Unión Proteica , Modelos Moleculares
2.
Int J Biol Macromol ; 242(Pt 3): 124880, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37217059

RESUMEN

Amyloid beta (Aß) peptide aggregates rapidly into the soluble oligomers, protofibrils and fibrils to form senile plaques, a neurotoxic component and pathological hallmark of Alzheimer's disease (AD). Experimentally, it has been demonstrated the inhibition of an early stages of Aß aggregation by a dipeptide D-Trp-Aib inhibitor, but its molecular mechanism is still unclear. Hence, in the present study, we used molecular docking and molecular dynamics (MD) simulations to explore the molecular mechanism of inhibition of an early oligomerization and destabilization of preformed Aß protofibril by D-Trp-Aib. Molecular docking study showed that the D-Trp-Aib binds at the aromatic (Phe19, Phe20) region of Aß monomer, Aß fibril and hydrophobic core of Aß protofibril. MD simulations revealed the binding of D-Trp-Aib at the aggregation prone region (Lys16-Glu22) resulted in the stabilization of Aß monomer by π-π stacking interactions between Tyr10 and indol ring of D-Trp-Aib, which decreases the ß-sheet content and increases the α-helices. The interaction between Lys28 of Aß monomer to D-Trp-Aib could be responsible to block the initial nucleation and may impede the fibril growth and elongation. The loss of hydrophobic contacts between two ß-sheets of Aß protofibril upon binding of D-Trp-Aib at the hydrophobic cavity resulted in the partial opening of ß-sheets. This also disrupts a salt bridge (Asp23-Lys28) leading to the destabilization of Aß protofibril. Binding energy calculations revealed that van der Waals and electrostatic interactions maximally favours the binding of D-Trp-Aib to Aß monomer and Aß protofibril respectively. The residues Tyr10, Phe19, Phe20, Ala21, Glu22, Lys28 of Aß monomer, whereas Leu17, Val18, Phe19, Val40, Ala42 of protofibril contributing for the interactions with D-Trp-Aib. Thus, the present study provides structural insights into the inhibition of an early oligomerization of Aß peptides and destabilization of Aß protofibril, which could be useful to design novel inhibitors for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Simulación del Acoplamiento Molecular , Dipéptidos , Simulación de Dinámica Molecular
3.
Comput Biol Med ; 159: 106965, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119552

RESUMEN

Vancomycin resistance in enterococci mainly arises due to alteration in terminal peptidoglycan dipeptide. A comprehensive structural analysis for substrate specificity of dipeptide modifying d-Alanine: d-Serine ligase (Ddls) is essential to screen its inhibitors for combating vancomycin resistance. In this study modeled 3D structure of EgDdls from E. gallinarum was used for structure based virtual screening (SBVS) of oxadiazole derivatives. Initially, fifteen oxadiazole derivatives were identified as inhibitors at the active site of EgDdls from PubChem database. Further, four EgDdls inhibitors were evaluated using pharmacokinetic profile and molecular docking. The results of molecular docking showed that oxadiazole inhibitors could bind preferentially at ATP binding pocket with the lowest binding energy. Further, molecular dynamics simulation results showed stable behavior of EgDdls in complex with screened inhibitors. The residues Phe172, Lys174, Glu217, Phe292, and Asn302 of EgDdls were mainly involved in interactions with screened inhibitors. Furthermore, MM-PBSA calculation showed electrostatic and van der Waals interactions mainly contribute to overall binding energy. The PCA analysis showed motion of central domain and omega loop of EgDdls. This is involved in the formation of native dipeptide and stabilized after binding of 2-(1-(Ethylsulfonyl) piperidin-4-yl)-5-(furan-2-yl)-1,3,4-oxadiazole, which could be reason for the inhibition of EgDdls. Hence, in this study we have screened inhibitors of EgDdls which could be useful to alleviate the vancomycin resistance problem in enterococci, involved in hospital-acquired infections, especially urinary tract infections (UTI).


Asunto(s)
Enterococcus , Vancomicina , Enterococcus/metabolismo , Vancomicina/farmacología , Vancomicina/química , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Resistencia a la Vancomicina , Dipéptidos/metabolismo , Ligasas/metabolismo , Proteínas Bacterianas/química
4.
Int J Biol Macromol ; 223(Pt A): 335-345, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36374713

RESUMEN

We report the impact of gut protease inhibition on the development of Helicoverpa armigera by trypsin inhibitor and the use of molecular modeling to understand the mechanism of trypsin inhibition. Larvae of H. armigera fed on an artificial diet containing 150 and 300 µg/ml SSTI showed a negative impact on the insects' development in terms of mean larval weight, larval fatality, survival rate, and nutritional indices. Prominent physical abnormalities like curled wings, malformed appendages, and small body size were observed during the development. Gene expression studies revealed down regulation in trypsin (HaTry 1, 2, 3, 4, 6, 8) and chymotrypsin (HaChy 1, 2, 3, 4) genes of the larval gut upon treatment of SSTI. Homology modeling has been used to build the three-dimensional structure of SSTI, which showed ß-sheets having a stable canonical inhibitory loop (CIL) with conserved lysine residue. Molecular docking studies showed the strong binding of SSTI at the active site of trypsin. Molecular dynamic (MD) simulation revealed the stable interactions of the rigid CIL of SSTI at the active site of trypsin, leading to its destabilization. Conserved lysine63 of the P1 site in SSTI forms a strong hydrogen bonding network with residues Asp189 and Ser190 of trypsin.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Solanum , Animales , Inhibidores de Tripsina/química , Tripsina/metabolismo , Insecticidas/metabolismo , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/genética , Larva/metabolismo
5.
Cell Biochem Biophys ; 80(4): 665-680, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35965304

RESUMEN

Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5'-monophosphate 2-methylthio cyclic N6-threonylcarbamoyladenosine (p-ms2ct6A) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-ms2ct6A has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-ms2ct6A is stabilized by intramolecular interactions between N(3)…HC(2'), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (ß) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-ms2ct6A. Further, molecular dynamics simulations of p-ms2ct6A revealed the role of ribose sugar ring puckering i.e. C2'-endo and C3'-endo on the structural dynamics of ms2ct6A side chain. The modified nucleotide p-ms2ct6A periodically prefers both the C2'-endo and C3'-endo sugar with 'anti' and 'syn' conformations. This property of p-ms2ct6A could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNALys of Bacillus subtilis containing ms2ct6A at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-ms2ct6A. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-ms2ct6A. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, ms2ct6A in recognition of the proper codons AAA/AAG during protein biosynthesis.


Asunto(s)
Anticodón , ARN de Transferencia de Lisina , Codón , Nucleósidos/química , Nucleótidos , Ribosa
6.
Biomolecules ; 12(7)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35883557

RESUMEN

In the current study, the purified ß-mannanase (Man/Cel5B) from Thermotoga maritima was immobilized on glutaraldehyde cross-linked chitosan beads. The immobilization of Man/Cel5B on chitosan beads was confirmed by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. After immobilization, the protein loading efficiency and immobilization yield were found to be 73.3% and 71.8%, respectively. The optimum pH for both free and immobilized enzymes was found to be pH 5.5. However, the optimum temperature of immobilized Man/Cel5B increased by 10 °C, from 85 °C (free Man/Cel5B) to 95 °C (Immobilized). The half-life of free and immobilized enzymes was found to be 7 h and 9 h, respectively, at 85 °C owing to the higher thermostability of immobilized Man/Cel5B. The increase in thermostability was also demonstrated by an increase in the energy of deactivation (209 kJmol-1) for immobilized enzyme compared to its native form (92 kJmol-1), at 85 °C. Furthermore, the immobilized Man/Cel5B displayed good operational stability as it retained 54% of its original activity after 15 repeated catalytic reactions concerning its free form.


Asunto(s)
Quitosano , Quitosano/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Glutaral/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Temperatura , beta-Manosidasa/metabolismo
7.
Biophys J ; 121(16): 3103-3125, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35810330

RESUMEN

Although it is relatively unexplored, accumulating data highlight the importance of tripartite crosstalk between nucleotide excision repair (NER), DNA replication, and recombination in the maintenance of genome stability; however, elucidating the underlying mechanisms remains challenging. While Escherichia coli uvrA and uvrB can fully complement polAΔ cells in DNA replication, uvrC attenuates this alternative DNA replication pathway, but the exact mechanism by which uvrC suppresses DNA replication is unknown. Furthermore, the identity of bona fide canonical and non-canonical substrates for UvrCs are undefined. Here, we reveal that Mycobacterium tuberculosis UvrC (MtUvrC) strongly binds to, and robustly cleaves, key intermediates of DNA replication/recombination as compared with the model NER substrates. Notably, inactivation of MtUvrC ATPase activity significantly attenuated its endonuclease activity, thus suggesting a causal link between these two functions. We built an in silico model of the interaction of MtUvrC with the Holliday junction (HJ), using a combination of homology modeling, molecular docking, and molecular dynamic simulations. The model predicted residues that were potentially involved in HJ binding. Six of these residues were mutated either singly or in pairs, and the resulting MtUvrC variants were purified and characterized. Among them, residues Glu595 and Arg597 in the helix-hairpin-helix motif were found to be crucial for the interaction between MtUvrC and HJ; consequently, mutations in these residues, or inhibition of ATP hydrolysis, strongly abrogated its DNA-binding and endonuclease activities. Viewed together, these findings expand the substrate specificity landscape of UvrCs and provide crucial mechanistic insights into the interplay between NER and DNA replication/recombination.


Asunto(s)
Endodesoxirribonucleasas , Proteínas de Escherichia coli , Escherichia coli , Daño del ADN , Reparación del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Especificidad por Sustrato
8.
AMB Express ; 12(1): 7, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35084596

RESUMEN

Bacillus velezensis SK having broad-spectrum antimicrobial activity has been isolated from soil. The efficient extraction of antimicrobial compounds produced in various mediums has been done using Diaion HP-20 resin. Further, characterization of an antimicrobial compound by TLC, FTIR, in-situ bioautography analysis revealed the presence of cyclic lipopeptides, which is then purified by the combination of silica gel, size exclusion, dual gradient, and RP-HPLC chromatography techniques. Growth kinetic studies showed that Bacillus velezensis SK produces a mixture of lipopeptides (1.33 gL-1). The lipopeptide exhibits good pH (2-10) and temperature stability up to 80 °C. LC-ESI-MS analysis of partially purified lipopeptide identified variant of surfactin, further analysis of purified chromatographic fractions revealed the occurrence of most abundant C15-surfactin homologues (m/z 1036.72 Da). The isolated surfactin exhibits good antimicrobial activity (1600 AU/ml) against drug-resistant food-born B. cereus and human pathogen Staphylococcus aureus. Hence, identified strain B. velezensis SK and its potent antibacterial surfactin lipopeptide could be used in various food and biomedical applications.

9.
J Biomol Struct Dyn ; 40(7): 3242-3257, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33183167

RESUMEN

Being a part of dormancy survival regulator (DosR) regulon, Rv2004c (rough morphology and virulent strain gene) has been identified in earlier experimental studies as an indispensable protein required for the growth and survival of Mycobacterium tuberculosis. This protein was predicted to have a role in inhibition of phospholipase A2 activity related to immuno-defence and other membrane-related events. Thus, considering significance of Rv2004c protein, a structure-based drug designing strategy was followed to identify potential inhibitors to this novel target. Initially, to validate the target, absence of homologous proteins in the host was verified through sequence and structure similarity search against human proteome. Then, a potential ligand binding site on the target was identified and virtual screening against Zinc database molecules was carried out. The top scoring hits along with their analogs were taken for docking studies with Glide. The binding free energy of the docked complexes of the Glide hits were predicted by Prime program from Schrodinger and molecules ZINC57990006, ZINC33605742, ZINC71773467 and ZINC34198774 were recognized as potential hits against this target. Analyzing the predicted pharmacokinetic properties of the molecules from QikProp and admetSAR tool, ZINC34198774 was identified as a valid molecule. Molecular dynamics simulation studies ascertained that ZINC34198774 could be a potential inhibitor against Rv2004c. Thus, results acquired from this study could be of use to design new therapeutics against tuberculosis.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Proteínas Bacterianas/genética , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/genética , Regulón/genética , Tuberculosis/genética
10.
J Biomol Struct Dyn ; 40(23): 12739-12749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34550842

RESUMEN

The soybean peroxidase (SBP) mediated nanohybrid [SBP-Cu3(PO4)2·3H2O] synthesis was carried out in the present study. The scanning electron microscopy (SEM) analysis showed a characteristic flower-like hierarchical structure of the SBP-nanohybrid. The mechanism of SBP-nanohybrid formation was elucidated using computational approaches. The predicted Cu2+ binding sites followed by molecular docking studies showed the two lowest energy (-4.4 kcal/mol and -3.56 kcal/mol) Cu2+ binding sites. These two binding sites are located at the opposite position and might be involved in the formation of SBP-nanohybrid assemblies. Further, these sites are different than the catalytic active site pocket of SBP, and may facilitate more substrate catalysis. Obtained computational results were confirmed by in-vitro guaiacol oxidations studies using SBP-nanohybrid. The effect of various parameters on SBP-nanohybrid activity was studied. The pH 7.2 was found optimum for SBP-nanohybrid activity. The enzyme activity increased with an increase in temperature up to 50 °C temperature and then decreased with an increase in temperature. Around ∼138% enhanced activity was recorded using SBP-nanohybrid compared to crude SBP. Also, the SBP-nanohybrid showed around 95% decolorization of methylene blue (MB) in 1 h and the MB degradation was confirmed by high-pressure liquid chromatography analysis (HPLC).Communicated by Ramaswamy H. Sarma.


Asunto(s)
Glycine max , Peroxidasa , Peroxidasa/química , Simulación del Acoplamiento Molecular , Peroxidasas/metabolismo , Colorantes/química
11.
Inform Med Unlocked ; 24: 100597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34075338

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been responsible for the cause of global pandemic Covid-19 and to date, there is no effective treatment available. The spike 'S' protein of SARS-CoV-2 and ACE2 of the host cell are being targeted to design new drugs to control Covid-19. Similarly, a transmembrane serine protease, TMPRSS2 of the host cell plays a significant role in the proteolytic cleavage of viral 'S' protein helpful for the priming of ACE2 receptors and viral entry into human cells. However, three-dimensional structural information and the inhibition mechanism of TMPRSS2 is yet to be explored experimentally. Hence, we have used a molecular dynamics (MD) simulated homology model of TMPRSS2 to study the inhibition mechanism of experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride (BHH) using molecular modeling techniques. Prior to docking, all three inhibitors were geometry optimized by semi-empirical quantum chemical RM1 method. Molecular docking analysis revealed that Camostat mesylate and its structural analogue Nafamostat interact strongly with residues His296 and Ser441 present in the catalytic triad of TMPRSS2, whereas BHH binds with Ala386 along with other residues. Comparative molecular dynamics simulations revealed the stable behavior of all the docked complexes. MM-PBSA calculations also revealed the stronger binding of Camostat mesylate to TMPRSS2 active site residues as compared to Nafamostat and BHH. Thus, this structural information could be useful to understand the mechanistic approach of TMPRSS2 inhibition, which may be helpful to design new lead compounds to prevent the entry of SARS-Coronavirus 2 in human cells.

12.
3 Biotech ; 10(6): 247, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32411571

RESUMEN

Alzheimer's disease (AD) is a chronic and progressive neurological brain disorder. AD pathophysiology is mainly represented by formation of neuritic plaques and neurofibrillary tangles (NFTs). Neuritic plaques are made up of amyloid beta (Aß) peptides, which play a central role in AD pathogenesis. In AD brain, Aß peptide accumulates due to overproduction, insufficient clearance and defective proteolytic degradation. The degradation and cleavage mechanism of Aß peptides by several human enzymes have been discussed previously. In the mean time, numerous experimental and bioinformatics reports indicated the significance of microbial enzymes having potential to degrade Aß peptides. Thus, there is a need to shift the focus toward the substrate specificity and structure-function relationship of Aß peptide-degrading microbial enzymes. Hence, in this review, we discussed in vitro and in silico studies of microbial enzymes viz. cysteine protease and zinc metallopeptidases having ability to degrade Aß peptides. In silico study showed that cysteine protease can cleave Aß peptide between Lys16-Cys17; similarly, several other enzymes also showed capability to degrade Aß peptide at different sites. Thus, this review paves the way to explore the role of microbial enzymes in Aß peptide degradation and to design new lead compounds for AD treatment.

13.
Virus Res ; 285: 198014, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32418904

RESUMEN

The neurotropic behavior of Chandipura virus (CHPV) is partly understood in experimental animals. Under in vitro conditions, neuronal cells could be a useful tool to study the CHPV interaction with neuronal proteins. The information gathered from such studies will help to design the new therapeutics for CHPV infection. This study identified the surface vimentin protein involved in adsorption of CHPV on Neuro-2a cell line (mouse neuroblastoma cells). The decrease in CHPV infectivity to Neuro-2a cells was observed in the presence of recombinant vimentin or anti-vimentin antibody. Vimentin mRNA expression remains unaltered in CHPV infected Neuro-2a cells. Furthermore, in silico analysis predicted the residues in vimentin and CHPV glycoprotein (G); probably involved in cell-virus interactions. Overall, we conclude that surface vimentin in Neuro-2a cells interact with CHPV and facilitate the binding of CHPV to the cells; it could be acting as a co-receptor for the CHPV. Further investigation is necessary to confirm the exact role of vimentin in CHPV infection in neuronal cells.


Asunto(s)
Neuronas , Infecciones por Rhabdoviridae/virología , Vesiculovirus/fisiología , Vimentina/metabolismo , Animales , Chlorocebus aethiops , Interacciones Microbiota-Huesped , Ratones , Neuronas/metabolismo , Neuronas/virología , Células Vero , Replicación Viral
14.
ACS Omega ; 4(25): 21327-21339, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31867527

RESUMEN

Transfer RNA remains to be a mysterious molecule of the cell repertoire. With its modified bases and selectivity of codon recognition, it remains to be flexible inside the ribosomal machinery for smooth and hassle-free protein biosynthesis. Structural changes occurring in tRNA due to the presence or absence of wybutosine, with and without Mg2+ ions, have remained a point of interest for structural biologists. Very few studies have come to a conclusion correlating the changes either with the structure and flexibility or with the codon recognition. Considering the above facts, we have implemented molecular modeling methods to address these problems using multiple molecular dynamics (MD) simulations of tRNAPhe along with codons. Our results highlight some of the earlier findings and also shed light on some novel structural and functional aspects. Changes in the stability of tRNAPhe in native or codon-bound states result from the conformations of constituent nucleotides with respect to each other. A smaller change in their conformations leads to structural distortions in the base-pairing geometry and eventually in the ribose-phosphate backbone. MD simulation studies highlight the preference of UUC codons over UUU by tRNAPhe in the presence of wybutosine and Mg2+ ions. This study also suggests that magnesium ions are required by tRNAPhe for proper recognition of UUC/UUU codons during ribosomal interactions with tRNA.

15.
Braz J Microbiol ; 50(4): 887-898, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401782

RESUMEN

Bacterial resistance towards aminoglycoside antibiotics mainly occurs because of aminoglycoside phosphotransferases (APHs). It is thus necessary to provide a rationale for focusing inhibitor development against APHs. The nucleotide triphosphate (NTP) binding site of eukaryotic protein kinases (ePKs) is structurally conserved with APHs. However, ePK inhibitors cannot be used against APHs due to cross reactivity. Thus, understanding bacterial resistance at the atomic level could be useful to design new inhibitors against such resistant pathogens. Hence, we carried out in vitro studies of APH from newly deposited multidrug-resistant organism Bacillus subtilis subsp. subtilis strain RK. Enzymatic modification studies of different aminoglycoside antibiotics along with purification and characterization revealed a novel class of APH, i.e., APH(5), with molecular weight 27 kDa approximately. Biochemical analysis of virtually screened inhibitor ZINC71575479 by coupled spectrophotometric assay showed complete enzymatic inhibition of purified APH(5). In silico toxicity study comparison of ZINC71575479 with known inhibitor of APH, i.e., tyrphostin AG1478, predicted its acceptable values for 96 h fathead minnow LC50, 48 h Tetrahymena pyriformis IGC50, oral rat LD50, and developmental toxicity using different QSAR methodologies. Thus, the present study gives novel insight into the aminoglycoside resistance and inhibition mechanism of APH(5) by applying experimental and computational techniques synergistically.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Kanamicina Quinasa/metabolismo , Aminoglicósidos/farmacología , Animales , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Bacillus subtilis/aislamiento & purificación , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Kanamicina Quinasa/antagonistas & inhibidores , Kanamicina Quinasa/química , Kanamicina Quinasa/genética , Filogenia , Ratas , Microbiología del Suelo
16.
ACS Sustain Chem Eng ; 6(7): 9304-9313, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-30271690

RESUMEN

Metabolic engineering has the potential to steadily enhance product titers by inducing changes in metabolism. Especially, availability of cofactors plays a crucial role in improving efficacy of product conversion. Hence, the effect of certain trace elements was studied individually or in combinations, to enhance butanol flux during its biological production. Interestingly, nickel chloride (100 mg L-1) and sodium selenite (1 mg L-1) showed a nearly 2-fold increase in solvent titer, achieving 16.13 ± 0.24 and 12.88 ± 0.36 g L-1 total solvents with yields of 0.30 and 0.33 g g-1, respectively. Subsequently, the addition time (screened entities) was optimized (8 h) to further increase solvent production up to 18.17 ± 0.19 and 15.5 ± 0.13 g L-1 by using nickel and selenite, respectively. A significant upsurge in butanol dehydrogenase (BDH) levels was observed, which reflected in improved solvent productions. Additionally, a three-dimensional structure of BDH was also constructed using homology modeling and subsequently docked with substrate, cofactor, and metal ion to investigate proper orientation and molecular interactions.

17.
J Ethnopharmacol ; 222: 121-132, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-29698774

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hymenocallis littoralis (Jacq.) Salisb. has been referred as beach spider lily and commonly known for its rich phytochemical diversity. Phytochemicals such as alkaloids, volatile constituents, phenols, flavonoids, flavonols extracted from different parts of these plants like bulbs, flowers, leaf, stem and root had been used in folk medicines from ancient times because of their excellent antimicrobial and antioxidant properties. The leaf and bulb extract of H. littoralis plant was traditionally used for wound healing. Alkaloids extracted from bulb of this plant possess anti-viral, anti-neoplastic and cytotoxic properties. However, these phytochemicals have also shown antibiofilm activity, which is considered as one of the important factor accountable for the drug resistance in microorganisms. Thus, the investigation of medicinal properties of H. littoralis could be useful to control biofilm producing pathogens. AIM OF THE STUDY: Explore antimicrobial, antibiofilm and antioxidant potentials of H. littoralis against pathogenic microorganisms using experimental and computational biology approach. MATERIALS AND METHODS: Phytochemical extraction from dried powder of H. littoralis leaves was done by solvent extraction using methanol. Antimicrobial and antibiofilm activities of leaves extract were carried out using agar well diffusion method, growth curve, minimum inhibitory concentration (MIC) and Scanning Electron Microscopy (SEM). Liquid Chromatography and Mass Spectroscopy (LCMS) technique was used for the identification of phytochemicals. Molecular docking studies of antibiofilm agents with adhesin proteins were performed using Autodock 4.2. Antioxidant activity of extract was carried out by FRAP assay. The noxious effect of extract was investigated by histological studies on rat skin. RESULTS: The preliminary phytochemical analysis of methanolic leaves extract revealed the presence of alkaloids, flavonoids, terpenoid, glycosides, terpene, terpenoids and phenolics. The various phytochemicals such as Apigenin 7-(4'', 6'' diacetylalloside)-4'- alloside, Catechin 7-O- apiofuranoside, Emodic acid, Epicatechin 3-O- ß-D-glucopyranoside, 4 - Methylesculetin, Methylisoeugenol, Quercetin 5,7,3',4'-tetramethyl ether 3-rutinoside, 4 - Methylumbelliferyl ß-D- glucuronide were extracted, characterized and recognized from the leaves extract of H. littoralis. The identification of these phytochemicals was performed using LC-MS. The antimicrobial property of H. littoralis leaf extract was investigated against different pathogenic microorganisms. Out of these tested microorganisms, promising antibiofilm and antimicrobial activities were confirmed against S. aureus NCIM 2654 and C. albicans NCIM 3466 by using growth curve and SEM analysis. MIC of this leaf extract was identified as 45 µg/ml and 70 µg/ml for S. aureus NCIM 2654 and C. albicans NCIM 3466 respectively. The leaves extract also showed good antioxidant activity due to presence of phenols and flavonoids. Molecular docking of these identified antibiofilm components interacts with the active site residues of adhesin proteins, Sortase A and Als3 from S. aureus and C. albicans respectively. Histological studies of extracted phytochemicals revealed non-noxious effects on rat skin. CONCLUSION: Thus, the present study revealed that the leaves extract of H. littoralis contains various phytochemicals having good extent of antimicrobial, antibiofilm and antioxidant properties. The in-vitro and in-silico results would be useful to design new lead compounds against biofilm producing pathogenic microorganisms.


Asunto(s)
Amaryllidaceae , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Extractos Vegetales/farmacología , Adhesinas Bacterianas/metabolismo , Aminoaciltransferasas/metabolismo , Animales , Antiinfecciosos/análisis , Antioxidantes/análisis , Antioxidantes/farmacología , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Candida albicans/fisiología , Cisteína Endopeptidasas/metabolismo , Proteínas Fúngicas/metabolismo , Masculino , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Simulación del Acoplamiento Molecular , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/análisis , Hojas de la Planta , Ratas Wistar , Piel/efectos de los fármacos
18.
Gene ; 641: 310-325, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29107006

RESUMEN

Hypermodified bases present at 3'-adjacent (37th) position in anticodon loop of tRNAPhe are well known for their contribution in modulating codon-anticodon interactions. Peroxywybutosine (o2yW), a wyosine family member, is one of such tricyclic modified bases observed at the 37th position in tRNAPhe. Conformational preferences and three-dimensional structural analysis of peroxywybutosine have not been investigated in detail at atomic level. Hence, in the present study quantum chemical semi-empirical RM1 and multiple molecular dynamics (MD) simulations have been used to study structural significance of peroxywybutosine in tRNAPhe. Full geometry optimizations over the peroxywybutosine base have also been performed using ab-initio HF-SCF (6-31G**), DFT (B3LYP/6-31G**) and semi-empirical PM6 method to compare the salient properties. RM1 predicted most stable structure shows that the amino-carboxy-propyl side chain of o2yW remains 'distal' to the five membered imidazole ring of tricyclic guanosine. MD simulation trajectory of the isolated peroxy base showed restricted periodical fluctuations of peroxywybutosine side chain which might be helpful to maintain proper anticodon loop structure and mRNA reading frame during protein biosynthesis process. Another comparative MD simulation study of the anticodon stem loop with codon UUC showed various properties, which justify the functional implications of peroxywybutosine at 37th position along with other modified bases present in ASL of tRNAPhe. Thus, this study presents an atomic view into the structural properties of peroxywybutosine, which can be useful to determine its role in the anticodon stem loop in context of codon-anticodon interactions and frame shift mutations.


Asunto(s)
Anticodón/genética , Codón/genética , Guanosina/análogos & derivados , Nucleósidos/genética , ARN de Transferencia de Fenilalanina/genética , Anticodón/química , Codón/química , Mutación del Sistema de Lectura/genética , Guanosina/química , Guanosina/genética , Conformación Molecular , Simulación de Dinámica Molecular , Nucleósidos/química , Biosíntesis de Proteínas/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia de Fenilalanina/química
19.
J Cell Biochem ; 119(3): 2679-2695, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29057497

RESUMEN

Antibiotic resistance to aminoglycoside group of antibiotics mainly occurs by aminoglycoside kinases (AKs). Thus, targeting AKs from different multidrug resistant (MDR) strains could result into inhibition of AK enzymes and ultimately the resistance. Therefore, the present study aims to target one of these AKs that is APH(3')-Ia from Acinetobacter baumannii through structure based virtual screening (SBVS) and test the binding affinity of the most stable virtually screened inhibitor with AKs from Mycobacterium tuberculosis, Acinetobacter baumannii, Enterococcus gallinarum, and Escherichia coli. SBVS investigated ZINC71575479 as a most stable inhibitor with -8.92 kcal/mol of binding energy and 0.66 µM of inhibition constant. Molecular docking results revealed that the ZINC71575479 can efficiently bind to nucleotide triphosphate (NTP) binding site of different AKs which is a known drug target site. Sequence analysis study of different AKs showed no significant similarity for active site residues; however structure superimposition study showed conserved NTP-binding domain. Molecular dynamics (MD) simulations showed stable behavior of all docked complexes with notable conformational stability of salt bridges at NTP-binding site of different AKs. Binding energy calculations revealed the interactions between key residues from NTP- binding domain of different AKs with ZINC71575479. In order to validate the MD simulations and binding energy results, crystal structure complexed with tyrphostin AG1478 a known inhibitor of AKs was kept as control. Thus, this work demonstrates the binding efficiency of ZINC71575479 toward different AKs for circumventing aminoglycoside resistance and opens avenues for the development of new antibiotics that can target diverse MDR strains with aminoglycoside resistance.


Asunto(s)
Acinetobacter baumannii/enzimología , Proteínas Bacterianas , Enterococcus/enzimología , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Fosfotransferasas , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Cristalografía por Rayos X , Farmacorresistencia Bacteriana Múltiple , Fosfotransferasas/antagonistas & inhibidores , Fosfotransferasas/química
20.
J Biomol Struct Dyn ; 36(16): 4182-4196, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29243556

RESUMEN

Deficiency of 5-taurinomethyl-2-thiouridine, τm5s2U at the 34th 'wobble' position in tRNALys causes MERRF (Myoclonic Epilepsy with Ragged Red Fibers), a neuromuscular disease. This modified nucleoside of mt tRNALys, recognizes AAA/AAG codons during protein biosynthesis process. Its preference to identify cognate codons has not been studied at the atomic level. Hence, multiple MD simulations of various molecular models of anticodon stem loop (ASL) of mt tRNALys in presence and absence of τm5s2U34 and N6-threonylcarbamoyl adenosine (t6A37) along with AAA and AAG codons have been accomplished. Additional four MD simulations of multiple ASL mt tRNALys models in the context of ribosomal A-site residues have also been performed to investigate the role of A-site in recognition of AAA/AAG codons. MD simulation results show that, ASL models in presence of τm5s2U34 and t6A37 with codons AAA/AAG are more stable than the ASL lacking these modified bases. MD trajectories suggest that τm5s2U recognizes the codons initially by 'wobble' hydrogen bonding interactions, and then tRNALys might leave the explicit codon by a novel 'single' hydrogen bonding interaction in order to run the protein biosynthesis process smoothly. We propose this model as the 'Foot-Step Model' for codon recognition, in which the single hydrogen bond plays a crucial role. MD simulation results suggest that, tRNALys with τm5s2U and t6A recognizes AAA codon more preferably than AAG. Thus, these results reveal the consequences of τm5s2U and t6A in recognition of AAA/AAG codons in mitochondrial disease, MERRF.


Asunto(s)
Codón/genética , Nucleósidos/genética , ARN de Transferencia de Lisina/genética , ARN de Transferencia/genética , Adenosina/análogos & derivados , Adenosina/genética , Animales , Anticodón/genética , Enlace de Hidrógeno , Mamíferos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Ribosomas/genética , Tiouridina/análogos & derivados , Tiouridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...